

The Forensic Application of the Blood Group Antigens Lu^a and Lu^b

Jürgen Henke and Marianne Basler

Institut für Rechtsmedizin der Universität Düsseldorf, Moorenstraße 5, D-4000 Düsseldorf, Federal Republic of Germany

Summary. Blood samples from 507 unrelated persons in Northrhine-Westphalia and from 254 paternity cases were tested for the Lutheran blood group antigens Lu^a and Lu^b . The gene frequencies were found to be $0.03 \, (=Lu^a)$ and $0.969 \, (=Lu^b)$.

Key words: Red blood cell antigen system Lutheran, gene frequencies, plausibility to exclude non-fathers, Lutheran system

Zusammenfassung. Anhand einer Stichprobe (n=507) wurden die Genfrequenzen der Antigene Lu^a und Lu^b im Raum Düsseldorf ermittelt. Die Frequenz für Lu^a beträgt 0,03; die für Lu^b 0,969. Aspekte der Lagerungsstabilität (für Identitätsgutachten), der Vaterschaftsausschlußchance sowie der Vererbung werden erörtert.

Schlüsselwörter: Lutheran-System, Populationsgenetik, Vaterschaftsausschlußchance

The Lutheran blood group system was discovered in 1945, when the first example of anti-Lu^a was identified by Callender et al. [2]. The antithetical antibody was found in 1956 by Cutbush and Chanarian [6]. The system remained simple until it was realized that several other antigens appeared to be related to the Lutheran system. Many test series with anti-Lu^a on people in different parts of the world have been reported [8, 9, 11].

This paper aims at giving a report about the frequency of the genes Lu^a and Lu^b in Northrhine-Westphalia. Furthermore, remarks on the stability of the Lu^a antigen are given as well as the plausibility to exclude non-fathers from paternity.

Material and Methods

Probands

Five hundred seven unrelated and healthy individuals living in the Düsseldorf area were investigated. Two hundred fifty-four paternity cases were analyzed.

Sera and Controls

The following sera were used:

Anti-Lu^a (111129) Biotest-Serum-Institut, Frankfurt/Main

Anti-Lu^a (015711A) Behringwerke AG, Marburg Fresenius, Bad Homburg

Anti-Lu^b (2538) Anti-Lu^b (002239) Merz & Dade AG, Düdingen

Anti-Lu^b (111079) Biotest-Serum-Institut, Frankfurt/Main

All sera worked well and reliably by following the particular advices of the distributors. Lu(a+b+) test cells were obtained from Behringwerke (Sangocell I). Lu(a-b-) test cells were contributed by Sheila Cornwall (Canadian Red Cross, Toronto) and by Dr. Mary N. Crawford (Villanova), (members of SCARF exchange group).

Results Phenotype Frequencies (n = 507)

	Observed	Expected
Lu(a-b+)	476 (= 93.89%)	476.5
Lu(a+b+)	31 (= 6.11%)	30.0
Lu(a+b-)	0	0.5
Lu(a-b)	0	-
Gene Frequencies		
$Lu^a = 0.630$	$Lu^{b}=0.969$	

The agreement between the observed and expected phenotypes is extraordinarily close ($\chi^2 = 0.53385$).

Studies of 254 Unselected Paternity Cases

a) Exclusion from Paternity

n	Child	Mother	Lover	Exclusions in other systems
61	Lu(a-)	Lu(a-)	Lu(a-)	yes
3	Lu(a+)	Lu(a-)	Lu(a-)	yes
2	Lu(a-)	Lu(a+)	Lu(a-)	yes
11	Lu(a-)	Lu(a-)	Lu(a+)	yes
1	Lu(a)	Lu(a+)	Lu(a+)	yes
1	Lu(a+)	Lu(a-)	Lu(a+)	yes
1	Lu(a+)	Lu(a+)	Lu(a-)	yes
0	Lu(a+)	Lu(a+)	Lu(a+)	

<i>b</i>)	No	Exci	usions

n	Child	Mother	Lover
155	Lu(a-)	Lu(a-)	Lu(a-)
5	Lu(a+)	Lu(a-)	Lu(a+)
4	Lu(a-)	Lu(a+)	Lu(a-)
4	Lu(a+)	Lu(a+)	Lu(a-)
1	Lu(a+b-)	Lu(a+b+)	Lu(a+b+)
0	Lu(a-)	Lu(a+)	Lu(a+)
4	Lu(a-)	Lu(a-)	Lu(a+)
1	Lu(a+b+)	Lu(a+b+)	Lu(a+b+)

Plausibility to Exclude Non-fathers from Paternity

The plausibility to exclude any non-father from paternity is calculated by means of the formula $pq(1-pq) + 2(pq)^2$. The calculation brings about a value of 2.99%.

Studies of the Stability of the Lu^a Antigen in Stored Blood Samples

After a storage time of about 6 months at 4°C, a Lu(a+) red cell was usually classified reliably. This reliability normally does not primarily depend on the age of a particular blood sample but on its grade of hemolysis. If a sample had been kept in good condition, we achieved pretty good results when introducing the Lu^a antigen in expertises on the identity of a particular sample (e.g., in cases of claimed confoundance).

Discussion

The segregation of the phenotypes in the offsprings given above supports the assumed way of autosomal codominant inheritance.

Although we did not find any Lu(a-b-) individual in our series, attention should be drawn to this phenotype! Crawford et al. [4] reported the first example of this kind and some more have been found in the meantime. Crawford et al.'s study [4] revealed that this Lu(a-b-) phenotype was controlled by just *one dominant* gene! This has been a very unusual finding, because the majority of "minus-minus" phenotypes in other systems only occur when a pair of recessive genes is inherited [10, 12].

That the Lu(a-b-) phenotype can also be due to a recessive genetic background, was suspected by Darnborough et al. [7] and later confirmed by Brown et al. [1].

Crawford et al. [5] have shown that the expression of the P_1 antigen (e.g., also Au^a and i) is altered: They noted a highly significant excess of P_1 -negative individuals being Lu(a-b-) of the dominant character.

There is evidence that the dominant Lu(a-b-) state can prevent the expression of the P_1 antigen in people of this phenotype who also have inherited a P_1 gene [3].

J. Henke and M. Basler

The time and mode of action of the inhibitor locus on the Lutheran, Auberger, P, and i antigens is not known. The less appropriate notated locus In(Lu) [12] is known to be genetically independent of the Lutheran [13] and the P locus. Obviously, these circumstances may lead to a false exclusion from paternity (e.g., in the P system) [3].

References

- 1 Brown F, Simpson S, Cornwall S, Moore BPL, Øyen R, Marsh WL (1973) The recessive Lu(a-b-) phenotype: a family study. Vox Sang 26:259-264
- 2 Callender S, Race RR, Paykoc ZV (1945) Hypersensitivity to transfused blood. Br Med J 2:83
- 3 Contreras M, Tippett P (1974) The Lu(a-b-) syndrome and an apparent upset of P₁ inheritance. Vox Sang 27:369-371
- 4 Crawford MN, Greenwalt TJ, Sasaki T, Tippett P, Sanger R, Race RR (1961) The phenotype Lu(a-b-) together with unconventional Kidd groups in one family. Transfusion 1:228
- 5 Crawford MN, Tippett P, Sanger R (1974) Antigens Au^a, i, and P₁ of cells of the dominant type of Lu(a-b-). Vox Sang 26:283-287
- 6 Cutbush M, Chanarian I (1956) The expected blood group antibody, anti-Lu^b. Nature 178:796
- 7 Darnborough J, Firth R, Giles CM, Goldsmith KLG, Crawford MN (1963) A new antibody anti-Lu^aLu^b and two further examples of the genotype Lu(a-b-). Nature 198:796
- 8 Gonzenbach R, Hässig A, Rosin S (1955) Über posttransfusionelle Bildung von Anti-Lutheran-Antikörpern. Die Häufigkeit des Lutheran-Antigens Lu^a in der Bevölkerung Nord-, West- und Mitteleuropas. Blut 1:272-274
- 9 Hartmann O, Heier AM, Kornstad L, Weisert O, Örjasaeter H (1965) The frequency of the Lutheran blood group antigens, as defined by anti-Lu^a, in the Oslo population. Vox Sang 10: 234-238
- 10 Issitt PD, Issitt CH (1975) Applied blood group serology, 2nd edition, Spectra Biologicals, Oxnard
- 11 Mourant AE, Kopec AC, Domaniewska-Sobczak K (1976) The distribution of human blood groups and other polymorphisms, 2nd edition, Oxford University Press, London
- 12 Race RR, Sanger R (1975) Blood groups in man. Blackwell, London
- 13 Taliano V, Guevin R-M, Tippett P (1973) The genetics of a dominant inhibitor of the Lutheran antigens. Vox Sang 24:42-47

Received July 17, 1980